i	C_i	R_i	α _{<i>i</i>} [3]	α_i	$lpha_i$ для Mg ₃ Cd
1	6	3.194	-0.060	-0.051	-0.333
2	6	3.197	-0.064	-0.007	-0.333
3	6	4.519	0.105	0.393	1
4	2	5.219	0.789	0.580	1
5	12	5.536	0.015	0.050	-0.333
6	6	5.537	-0.112	-0.005	-0.333
7	12	6.116	0.000	-0.001	-0.333
8	6	6.394	-0.042	0.011	1
9	12	7.147	0.028	-	-0.333
10	12	7.606	-0.009	-	1

Таблица 1. Координационные числа, значения радиусов координационных сфер, параметров ближнего порядка сплава Mg-10at.%In и сверхструктуры Mg₃Cd

Заключение

В данной работе поликристаллическом неупорядоченном твердом растворе с гексагональной плотноупакованной решеткой Mg-10at.%In определены параметры ближнего порядка на первых 8 координационных сферах, в том числе и для сфер с практически одинаковыми радиусами. Методика основана на микроскопическом учете эффектов статических смещений и позволяет надежно разделять вклады координационных сфер с практически одинаковыми радиусами. Показано, что в сплаве Mg-10at.%In ближний порядок формируется по типу дальнего порядка Mg₃Cd.

Литература

1. Кривоглаз М.А. Теория рассеяния рентгеновских лучей и тепловых нейтронов реальными кристаллами. М . Наука, 1967.-336 С.

2. De Launay J. The theory of specific heats and lattice vibrations // Solid State Physics 2, 219-303 (1956)

3. Силонов В.М., Рохлин Л.Л., Энхтор Лхамсурэнгийн, Гляненко И.А., Чернокозов О.Б.// Исследование ближнего порядка в твердом растворе на основе магния в сплавах Mg-In. Металлы, №6, 111-114 (2002).

4. Кривоглаз М.А, Тю Хао. Статические искажения и диффузное рассеяние рентгеновских лучей в твердах растворах с гексагональной плотноупакованной решеткой.//Металлофизика 24, 63-70 (1968).

УДК53

doi: 10.18.101/978-5-9793-0883-8-201-203

The Comparing Calculations of X-RAY and Neutron Diffraction Intensities for ND₂FE₁₄B

I. Hishigdemberel^{*}, D. Sangaa¹

¹Institute of Physics and Technology, Mongolian Academy of Sciences, 13330 Ulaanbaatar, Mongolia, *e-mail: hishigee@ipt.ac.mn

Abstract

Time-of-Flight (TOF) neutron diffraction experiment carried out on hard magnetic material $Nd_2Fe_{14}B$ at the High-Resolution Fourier Diffractometer (HRFD) of Frank Laboratory of Neutron Physics, Joint Institute for Nuclear research (JINR), Dubna, Russia. The atomic and structure factors, intensities of neutron diffraction reflections for crystal $Nd_2Fe_{14}B$ have been calculated using Fortran package and MathLab program. A numerical results have been compared with neutron diffraction experimental data and calculation for X-Ray diffraction reflections.

Keywords: Nd2F614B, neutron diffraction, x-ray diffraction, atomic factor, structure factor.

Сравнительные расчеты для интенсивности рентгеновской и нейтронной дифракции кристалла ND₂FE₁₄B

И. Хишигдэмбэрэл^{*}, Д. Сангаа¹

¹Физико-Технологический Институт, Академия наук Монголии, 13330 г. Улан-Батор, Монголия

*e-mail: hishigee@ipt.ac.mn

Аннотация

Проведен ТОF нейтронографиный эксперимент на магнитном материале Nd₂Fe₁₄B при высокой разрешающей способности Фурье дифрактометра (ФДВР) в Лаборатории нейтронной физики Объединенного института ядерных исследований (ОИЯИ), Дубна, Россия. Атомные и структурные факторы, интенсивности нейтронной дифракции отражений для кристалла Nd₂Fe₁₄B вычислили с помощью Fortran и программы MathLab.Также показаны численные результаты по сравнению с экспериментальными данными и проведен расчет для рентгеновских дифракционных отражений.

Ключевые слова: *Nd*²*P*⁴4^B¹ нейтронная дифракции, дифракция рентгеновских лучей, атомный фактор, структурный фактор.

1. Introduction

The Nd-Fe-B permanent magnet is the strongest magnet in the world. The magnetic power of Rare Earth Element (REE) system magnets increases rapidly, for instance, from Sm-Co system to Nd-Fe-B system. There are many applications in the various field. Especially, Generator and motor for Hybrid cars is operated at high temperature, for instance, 200°C_o Fig.1. and Fig.2. shows the history and the applications of permanent magnets.

Fig. 2. Applications of NdFeB magnets.

2. Experiment

The diffraction patterns were measured with HRFD instrument at the IBR-2 pulsed reactor in Dubna . At this diffractometer the correlation technique of data acquisition is used, which provides a very high resolution ($\Delta d/d \approx 0.0013$) that is practically constant in a wide interval of dhkl spacing's. At HRFD (Fig. 3) diffraction patterns are measured at fixed scattering angles $2\theta = \pm 152^{\circ}$ in the wavelength range of 1 - 8 Å. One of the most important feature of neutron diffraction is a high penetration length (~1 cm), which helps investigating bulky materials[1].

3. Crystal structure

The $Nd_2Fe_{1,e}B$ have tetragonal crystal structure unit cell parameter a=b=8.80Å, c=12.19Å, $\alpha=\beta=\gamma=90^{\circ}$ and their symmetry space group is Pd_2/mnn (No.136) [3]. Intensity of X-ray diffraction of $Nd_2Fe_{1,e}B$ crystal depends on structure factor which depends upon positions of atoms and Miller index (*hkl*) of plane and atomic scattering factor f_f from value of diffraction angle [2].

$$F_{hkt}^{RBD} = \sum_{j=1}^{N} f_j e^{[2\pi t (hx_j + kh_j + iz_j)]}$$
(1)

Here, het -Miller index, x_{j}, y_{f}, z_{i} - atomic coordinates, f_{j} - atomic scattering factor. In general, atomic scattering factor for x-ray is [3]:

$$Y = a_0 + a_1 \left(\frac{\sin\theta}{\lambda}\right) + a_2 \left(\frac{\sin\theta}{\lambda}\right)^2 + \dots + a_7 \left(\frac{\sin\theta}{\lambda}\right)^7$$
(2)

Fig. 3. The principal plan of HRFD

Fig.4. Neutron diffraction pattern for $Nd_2Fe_{14}B$ after normalization at T=473K

Intensity of neutron diffraction of the crystal depends heavily on structure factor which depends upon positions of atoms in Miller index ($\hbar kl$) plane and atomic scattering length b_j which is not dependent from

$$F_{hkl}^{ND} = \sum_{j=1}^{N} b_j e^{[2\pi i \left(hx_j + kh_j + iz_j\right)]}$$
(3)

diffraction angle [1].

4. Calculation of atomic and structure factor

We have calculated atomic factors and structure factors of X-ray and neutron diffraction peaks intensities of $Nd_2Fe_{1,4}B$ crystal using equations (1), (2) and values using MathLab program. Calculation results have discussed in the presentation.

References

1. A. M. Balagurov, Neutron News 16 (2005) 8].

2. J.F.Herbst, W.B.Yelon "Crystal and magnetic structure of Pr₂Fe₁₄B and Dy₂Fe₁₄B" J. Appl. Phys. 57 (1985) 2343-2345

3. Mu Lu, Youwei Du. The Structure Factor or Structure Amplitude Massa, p. 37-40. Tilley, Ch. 6.7-6.11 pp. 125 – 135J. Appl. Phys. 55,2083 (1984).