doi: 10.18101/978-5-9793-0898-2-30-34

MECHANIC PROPERTIES AND MAGNETOCALORIC EFFECTS OF BONDED La_{0.9}Ce_{0.1}Fe_{11.7-x}Mn_xSi_{1.3}H_{1.8}

© *Ou Z.Q.*, Inner Mongolia Normal University, Huhhot, China

- © *Xia W.*, Inner Mongolia Normal University, Baotou Research Institute of Rare Earth, Huhhot, Baotou, China
- © *Song L.*, Inner Mongolia Normal University, Huhhot, China
- © *Huang J.H.*, Baotou Research Institute of Rare Earth, Baotou, China

The bonded $La_{0.9}Ce_{0.1}Fe_{11.7-x}Mn_xSi_{1.3}H_{1.8}$ materials have been prepared by powder metallurgy. The bonded materials, which have better mechanical properties and good magnetocaloric effects, can be more effectively utilized in the magnetic refrigerator.

Keywords: magnetic materials, magnetocaloric effect, powder

I. Introduction

La(Fe,Si)₁₃-based alloys have attracted much attention due to their low costs and non-toxic of raw material, and large MCEs compared to other magnetic refrigeration materials such as Gd-Si-Ge^[1] and Mn-Fe-P-As^[2] compounds.

However, La(Fe,Si)₁₃-based alloys are very brittle and not easy shapable. Generally, the mechanical properties of materials getting worse, even becomes powder after hydrogenation. In present work, the bonded La_{0.9}Ce_{0.1}Fe_{11.7-x}Mn_xSi_{1.3}H_{1.8} (x=0.27, 0.29, 0.31, 0.33) are prepared and the mechanical properties and magnetocaloric effects have been investigated.

II. Experimental details

The hydrogen concentration y of $La_{0.9}Ce_{0.1}Fe_{11.7-x}Mn_xSi_{1.3}H_y$ was measured to be ~1.8 by oxygen and nitrogen hydrogen analyzer (LECO ONH-836). The hydride powder was mixed with an epoxy resin adhesive in a proper proportion. Then the mixed powder was pressed into cylin-

drical pieces of $\phi 10 \times 10$ mm. The crystal structure was measured by X-ray diffraction (XRD), the phase structure of bonded La_{0.9}Ce_{0.1}Fe_{11.7-x}Mn_xSi_{1.3}H_{1.8} is NaZn₁₃-type cubic structure with a minor amount of α -Fe as impurity phase. The compression tests were performed by a universal material testing machine. The magnetic properties were measured by vibrating-sample magnetometer (VSM, Lakeshore 7407).

III. Results and Interpretation

Figure 1 shows the compressive stress-strain curve for bonded $La_{0.9}Ce_{0.1}Fe_{11.41}Mn_{0.29}Si_{1.3}H_{1.8}$. The $La_{0.9}Ce_{0.1}Fe_{11.41}Mn_{0.29}Si_{1.3}$ becomes powder after hydrogenation, so the bulk $LaFe_{10.99}Co_{0.91}Si_{1.1}B_{0.2}$, which has been tested in a reciprocating magnetic refrigerator and shows good mechanical and magnetocaloric properties, ^[3] is used for the compression tests and compared with bonded material. The compressive strength of bulk $LaFe_{10.99}Co_{0.91}Si_{1.1}B_{0.2}$ is about 290 Mpa, and the stress-strain curves drops sharply without further plastic deformation, indicating the characteristic of brittleness for bulk $LaFe_{10.99}Co_{0.91}Si_{1.1}B_{0.2}$. For the bonded $La_{0.9}Ce_{0.1}Fe_{11.41}Mn_{0.29}Si_{1.3}H_{1.8}$, its compressive strength is 332 Mpa, 15% higher than that of bulk $LaFe_{10.99}Co_{0.91}Si_{1.1}B_{0.2}$ compound. Besides, the stress-strain curves of bonded $La_{0.9}Ce_{0.1}Fe_{11.41}Mn_{0.29}Si_{1.3}H_{1.8}$ shows a short yield stage before the maximum compressive strength, this may be the bonded material is porous architecture and thus a strain could be observed due to the densification under stress.

The embedded graph of figure 1 exhibits magnetization isotherms of bonded $La_{0.9}Ce_{0.1}Fe_{11.41}Mn_{0.29}Si_{1.3}H_{1.8}$ near $T_{\rm C}$. Studies show that $LaFe_{11.7}Si_{1.3}$ compound exhibits a very large magnetic hysteresis loss of 41 J/kg^[4], which would strongly reduce the effective refrigeration capacity. The magnetic hysteresis of bonded $La_{0.9}Ce_{0.1}Fe_{11.41}Mn_{0.29}Si_{1.3}H_{1.8}$ is very small and the value is about 2 J/kg. The reasons could be: (1) the introduction Mn and H atoms weaken the nature of first-order magnetic transition, $^{[4,5]}$ and (2) the internal strain and grain boundaries are partially removed by introducing porosity in bonded materials. $^{[6]}$

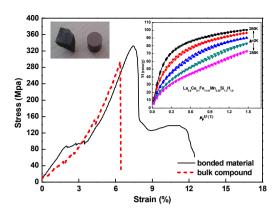


Fig. 1 Compressive stress-strain curves for bonded La_{0.9}Ce_{0.1}Fe_{11.41}Mn_{0.29}Si_{1.3}H_{1.8} in comparison with that of bulk LaFe_{10.99}Co_{0.91}Si_{1.1}B_{0.2}; embedded graph is magnetization isotherms of bonded La_{0.9}Ce_{0.1}Fe_{11.41}Mn_{0.29}Si_{1.3}H_{1.8} near T_c

Figure 2 shows the MCEs of bonded La_{0.9}Ce_{0.1}Fe_{11.7-x}Mn_xSi_{1.3}H_{1.8} including (a) isothermal magnetic entropy change (ΔS) and (b) adiabatic temperature change (ΔT_{ad}) under magnetic field change from 0 to 1.5T. For comparison, the MCEs of bulk LaFe_{10.99}Co_{0.91}Si_{1.1}B_{0.2}is also included in Fig. 2. With increasing Mn content, the ΔS of bonded La_{0.9}Ce_{0.1}Fe_{11.7-x}Mn_xSi_{1.3}H_{1.8} slightly decreases from 7.7 (x=0.27) to 7.1 J/kgK (x=0.33), but still remains a relatively higher value (> 7 J/kgK) than that of LaFe_{10.99}Co_{0.91}Si_{1.1} (about 5.1 J/kgK at 293K). The ΔT_{ad} of bonded La_{0.9}Ce_{0.1}Fe_{11.7-x}Mn_xSi_{1.3}H_{1.8} is obtained through a direct method for measuring. The results show that with increasing Mn content, the $T_{\rm C}$ of bonded materials linearly decreases from 287 to 275 K, while the ΔT_{ad} for bonded materials have hardly any change. The ΔT_{ad} of bonded La_{0.9}Ce_{0.1}Fe_{11.7-x}Mn_xSi_{1.3}H_{1.8} (≥2.6 K) is about 17% larger than that of LaFe_{10.99}Co_{0.91}Si_{1.1} (2.2 K at 293 K). Thus, the bonded materials also exhibit good MCEs in a temperature range from ~275 to ~290 K.

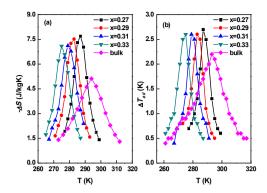


Fig.2 magnetocaloric effects of bonded $La_{0.9}Ce_{0.1}Fe_{11.7-x}Mn_xSi_{1.3}H_{1.8}$ in comparison with those of $LaFe_{10.99}Co_{0.91}Si_{1.1}B_{0.2}$ compound under magnetic field change from 0 to 1.5T

IV. Conclusions

The bonded La_{0.9}Ce_{0.1}Fe_{11.7-x}Mn_xSi_{1.3}H_{1.8}materials have been prepared by powder metallurgy. And the bonded material exhibits a better compressive strength of 332 Mpa, about 15% higher than that of bulk LaFe_{10.99}Co_{0.91}Si_{1.1}B_{0.2}. And the magnetic hysteresis for the bonded material is very low. By adding Mn atoms, the Curie temperature T_c can be adjusted near the room temperature. With increasing Mn content, the maximal ΔS_m of bonded materials slightly decreases, though, a relatively high value (>7 J/kgK) remains, while the ΔT_{ad} for bonded La_{0.9}Ce_{0.1}Fe_{11.7-x}Mn_xSi_{1.3}H_{1.8} is also maintained a high value (≥2.6 K) compared with LaFe_{10.99}Co_{0.91}Si_{1.1}B_{0.2} compound. Consequently, the bonded materials, which have better mechanical properties and good magnetocaloric effects, can be more effectively utilized in the magnetic refrigerator.

References

- 1) V.K. Pecharsky, and K.A. Gschcneidner, "Giant magnetocaloric effect in Gd5(Si2Ge2)", *Phys. Rev. Lett.* 78, 4994-4997, (1997).
- 2) O. Tegus, E. Brück, K.H.J. Buschow, and F.R. de Boer, "Transition-metal-based magnetic refrigerants of room-temperature applications", *Nature*. 415, 150-152, (2002).
- 3) J. Cheng, G.D. Liu, J.H. Huang, C.L. Liu, P.Y. Jin, and H.W. Yan, "Refrigeration effect of La(FeCoSi)₁₃B_{0.25} compounds and gadolinium metal in reciprocation magnetic refrigerator", *J. Rare Earths.* 31(12), 1163-1167, (2013)

- 4) H. Zhang, B.G. Shen, Z.Y. Xu, X.Q. Zheng, J. Shen, F.X. Hu, J.R. Sun, Y. Long, "Reduction of hysteresis loss and large magnetocaloric effect in the C- and H-doped La(Fe, Si)13 compounds around room temperature", *J. Appl. Phys.* 111, 07A909, (2012)
- 5) F. Wang, Y.F. Chen, G.J. Wang, and B.G. Shen, "The effect of Mn substitution in LaFe11.7Si1.3 compound on the magnetic properties and magnetic entropy changes", J. Phys. D: Appl. Phys. 36, 1–3, (2003)
- 6) J. Lyubina, R. Schafer, N. Martin, L. Schultz, and O. Gutfleisch, "Novel Design of La(Fe,Si)13 Alloys Towards High Magnetic Refrigeration Performance", *Adv Mater.* 22(33), 3735-3739, (2010)

Склеенные $La_{0.9}Ce_{0.1}Fe_{11.7-x}Mn_xSi_{1.3}H_{1.8}$ материалы были подготовлены методом порошковой металлургии. Склеенные материалы, которые имеют более высокие механические свойства и хорошие эффекты магнетокалорическим, могут быть более эффективно использованы в магнитном хололильнике.

Ключевые слова: магнитные материалы, магнитокалорический эффект, порошок.