Особенности восточной краевой зоны Сибирской платформы

© Т. В. Володькова

Институт тектоники и геофизики им. Ю. А. Косыгина ДВО РАН, г. Хабаровск, Россия. E-mail: tat-volodkova@yandex.ru

Дана предварительная модель краевой зоны рифтов и разломов, в которой мантийные и астеносферные магмы двигаются по принципам гравитационной нестабильности Рэлея-Тейлора. Геологические данные доказывают затухающий характер возникающей волны и ее постепенное углубление.

Ключевые слова: краевая зона рифтов и разломов; горячие точки; нестабильность Рэлея-Тейлора; температуры плавления руд.

The features of the eastern marginal zone of the Siberian platform

T. V. Volodkova

Yu. A. Kosygin Institute of Tectonics and Geophysics, Far East Branch, RAS, Khabarovsk, Russia. E-mail: tat-volodkova@yandex.ru

A preliminary model developed for the marginal rift and fault zone is presented, in which the mantle and asthenospheric magmas are moving in accordance with the Rayleigh-Taylor instability principles. The geological data prove the decay pattern of the generated wave and its gradual propagation down to a greater depth.

Keywords: marginal rift and fault zone; hotspots; Rayleigh-Taylor instability; ore melting temperature.

Краевая юго-восточная зона рифтов и расколов на Сибирской платформе (Алдано-Становой щит) возникла в раннем докембрии, вследствие ее взаимодействия со смежными структурами. Эта глубинная зона повышенной проницаемости подчеркивается цепочками зеленокаменных поясов (Удыхинский, Чумиканский, Утукачанский), а также протягивающимся на огромное расстояние Учуро-Майским диаклазом, залеченным позднерифейскими габбро-диабазами [2]. При становлении зоны большую роль играл корово-мантийный магматизм в складчатом обрамлении платформы. В южной части зоны Ю. Ф. Малышевым и др., (2002) по комплексу геофизических данных, как область максимального подъема мантии, выделялся предположительный Мая-Селемджинский плюм диаметром до 1000 км. По геофизическим данным, при движении в северо-восточном направлении в зоне рифтов и расколов резко опускаются обе границы: корово-мантийная (граница Мохо) и кровля астеносферы [1]. В этой зоне выделяется серия горячих точек диаметром 100-150 км (Зейская, Верхне-Зейская, Токо, Кондер, Ингили), расположенных на одной оси северо-восточного простирания; промежутки между центрами этих структур близки. Связь этих структур с горячими точками доказывается равенством их диаметров и промежутков между ними. Северная часть краевой зоны (с тем же шагом) упирается в Сетте-Дабанскую веерообразную зону разломов, образующих структуру «конского хвоста»: наличие такой структуры обычно говорит о косом столкновении двух жестких блоков. В южной части зона рифтов и разломов имеет несколько изогнутую форму; характерно, что Зейская горячая точка относится к структуре Центрально-Азиатского складчатого пояса (ЦАСП). Этот факт можно объяснить постепенными смещениями Сибирской платформы и Амурской плиты, а также тем, что горячие точки — мантийные (подлитосферные) образования и слабо связаны с коровыми и литосферными блоками. Если в Зейской современной горячей точке мантийные магмы доходят до границы Мохо и проникают в кору, в северной части краевой зоны они находятся на значительной глубине. Такие закономерности в распределении горячих точек могут объясняться двумя причинами:

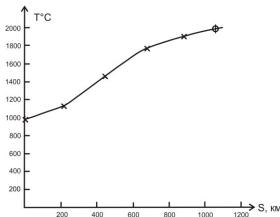
- 1. поток мантийных магм от Мая-Селемджинского плюма, поступает в проницаемую краевую зону и образует ряд горячих точек, постепенно заглубляясь, «скатываясь вниз» и уменьшаясь в объеме.
- 2. «постоянство шага» между горячими точками, вероятно, объясняется развитием в проницаемой краевой зоне процесса, наподобие гравитационной нестабильности Рэлея-Тейлора [3].

Подобный процесс возникает за счет неустойчивости поверхности раздела жидкостей с разными плотностями, когда слой с более высокой плотностью в гравитационном поле оказывается выше более низкоплотного слоя. В данном случае, более плотные плюмовые магмы в юго-западной части зоны оказываются выше корово-мантийных, менее плотных магм. Таким образом, в краевой зоне возникает затухающий волнообразный процесс, приводящий к образованию серии горячих точек с все более глубокими корнями. Постепенное затухание процесса также проявлено в том, что при дви-

жении на северо-восток диаметр структур постепенно уменьшается, и даже промежуток между ними равномерно сокрашается от 220 км до 150 км, в среднем составляя порядка 190 км.

В ареалах вышеупомянутых горячих точек расположены крупнейшие в регионе месторождения золота (Покровка, Пионер), платины (Кондер), редких земель (Арбарастах), циркония (Алгома, Ингилийская горячая точка). Для большинства рудоносных массивов (довольно крупных штоков) в этой зоне типичны многофазность, часто концентрически-кольцевое строение, длительное, многоэтапное развитие, широко проявленные процессы площадного и локального метасоматоза и преобладание магматизма мантийной, плюмовой природы (ультраосновные, щелочные породы).

Известно, что в сечении профиля на периферии Верхне-Зейской горячей точки расположена Чогаро-Удыхинская зона, связанная с зеленокаменным поясом, где в последнее десятилетие ведутся работы на медь и золото и обнаружены объекты, подтверждающие высокие перспективы. В ареале Ингилийской горячей точки кроме крупного месторождения циркония картируются ингилиты, относящиеся к типу кимберлитоподобных пород. В северо-восточной части краевой зоны (Сетте-Дабанская зона разломов), на примыкающей к ней части Алданской плиты, отмечались признаки нефтеносности, графитизации (?). Таким образом, все горячие точки зоны весьма перспективны на крупные объекты различных руд и нефти, причем, совершенно четко температура плавления этих руд постепенно повышается с юго-запада на северо-восток. Предположим, речь идет о весьма богатых рудными компонентами плюмовых магмах, которые скатываясь по краевой зоне все глубже на северо-восток, постепенно теряли все более легкоплавкие компоненты, за счет чего происходило обогащение тугоплавкими компонентами. Рудная специфика точки 6 (Сетте-Дабанская зона) неизвестна. Теоретически возможна нефть, связанная с плюмовыми процессами (пример — Сибирский плюм), которая возникает на значительных глубинах (табл. 1, рис. 1).


 Таблица 1

 Температуры плавления руд месторождений краевой зоны рифтов и расколов.

No	Название горячей	Основные рудные	Ведущий тип руд	Температура	Средняя Т,
П.П.	точки	объекты		плавления, С *1	C
1	Нижне-Зейская	Пионер, Покровка	Золото, серебро	961-1063	982
2	Верхне-Зейская		Медь, золото	1063-1085	1074
3	Токо	Арбарастах	Редкие земли, торий,	1132-1755	1444
			уран		
4	Кондерская	Кондер	Платина, платиноиды	1730-1820	1775
5	Ингили	Алгома, ингилиты (?)	Цирконий, алмаз(?)	1855-2000(?)*2	1928
6	Сетте-Дабанская	(?)	Признаки битума,	нет	нет
	зона		нефтепродуктов		

Примечания: 1. Указаны пределы температур плавления ведущих типов руд.

2. Температура, при которой алмаз сгорает, превратившись в графит, без доступа кислорода, составляет порядка 2000 0 C.

Рис. 1. Зависимость расстояний между эпицентрами горячих точек и и средними температурами плавления руд S — расстояние по профилю (км), T (C) — средняя температура плавления, х — параметры эпицентров горячих точек, их номер (1-Нижне-Зейская, 2-Верхне-Зейская, 3-Токо, 4-Кондер, 5-Ингили, 6-Сетте-Дабанская зона), øгипотетическая температура плавления в Сетте-Дабанской зоне.

Вывод: В связи с возрастанием глубинности источников, отмечается обратный по отношению к затухающей волне характер тренда температур плавления руд. Температура плавления (возможного формирования нефтепродуктов?) в Сетте-Дабанской зоне неизвестна, но с учетом графика она составляет порядка 2000 градусов. Эти данные можно учитывать при прогнозе оруденения в Сетте-Дабанской зоне. Модель является предварительной, тем не менее, идеальная форма кривой может являться доказательством полной проницаемости зоны для гравитационной волны Рэлея-Тейлора.

Литература

- 1. Литосфера области сочленения Тихоокеанского и Центрально-Азиатского складчатых поясов / Ю. Ф. Малышев [и др.] // Тектоника и геофизика литосферы: материалы XXXV Тектон.совещ. М.: ГЕОС, 2002. Т.1. С. 325–328.
- 2. Тектоника, глубинное строение, металлогения области сочленения Центрально-Азиатского и Тихооке-анского поясов: Объясн. Записка к Тектонич. Карте 1:1500000. Владивосток-Хабаровск: ДВО РАН, 2005. 246 с.
- 3. Трубицин В. П., Харыбин Е. В. Обобщенная неустойчивость Рэлея-Тейлора для суспензий, седиментационная конвекция // Физико-химическая кинетика в газовой динамике. 2012. Т. 13. Вып. 2.

Володькова Татьяна Васильевна, кандидат геолого-минералогических наук, старший научный сотрудник Института тектоники и геофизики им. Ю. А. Косыгина, г. Хабаровск.