Возраст и изотопная характеристика Булуктаевского молибден-вольфрамового месторождения (Республика Бурятия)

© <u>А. А. Савченко</u>, Г. С. Рипп

Геологический институт СО РАН, г. Улан-Удэ, Россия. E-mail: savchenko.alena.alex@rambler.ru

В статье представлена изотопная характеристика минеральных парагенезисов, присутствующих в породах и рудах Булуктайского молибден-вольфрамового месторождения. Впервые для этого месторождения Re-Os методом определен возраст молибденового оруденения.

Ключевые слова: молибден-вольфрамовое месторождение; гюбнерит; молибденит; изотопия О, S, H и C; Re-Os анализ.

The Buluktai Mo-W deposit (Republic of Buryatia): age and stable isotopes

A. A. Savchenko, G. S. Ripp

Geological Institute, SB RAS, Ulan-Ude, Russia. E-mail: savchenko.alena.alex@rambler.ru

The article presents isotopic characteristics of minerals in rocks and ore bodies from the Buluktai Mo-W deposit. The age of molybdenum mineralization is determined by Re-Os method for the first time.

Keywords: Mo-W deposit; gyubnerite; molybdenite; isotopy O, S, H, C; Re-Os analysis.

Булуктайское молибден-вольфрамовое месторождение является аналогом оруденения Джидинского рудного поля. Изучением геологии, минералогии, последовательности образования и возраста месторождения посвящено множество работ [1–8]. Большинством исследователей считается, что оруденение генетически связано с позднемезозойским гранитным массивом [8].

Месторождение расположено в пределах Джидинской структурно-металлогенической зоны, входящей в состав Саяно-Байкальского металлогенического пояса, протягивающегося с юго-востока на северо-запад почти на 160 км при ширине 40–70 км, занимая площадь около 7200 км². В пределах рудного района выделяется несколько рудных узлов. Здесь известно 7 месторождений, около 20 рудопроявлений и более 60 минерализованных точек.

Оруденение на месторождении Булуктай приурочено к трубообразной брекчии, жильным кварцевым телам и штокверку.

В настоящее время существует неоднозначность в оценке возраста оруденения и отсутствуют данные о источнике вещества его руд, что определило необходимость геохронологического и изотопного исследований.

Булуктайское молибден-вольфрамовое месторождение (рис. 1) является представителем совмещенных кварц-молибденитовой и гюбнерит-сульфидно-кварцевой рудных формаций. Часть месторождения приурочена к трубообразному телу брекчий с гидротермальным кварцевым цементом, содержащим вкрапленность шеелита, гюбнерита, берилла, молибденита и сульфидов. В кольцевой брекчированной зоне, примыкающей к «трубке», распространено штокверковое оруденение, представленное сетью разноориентированных кварцево-рудных прожилков, молибденовых и гюбнеритовых жил, существенно северо-западного направления (рис. 1).

В радиусе 15 км от месторождения, вблизи границы с Монголией, выявлено более 30 участков распространения кварцевых жил и штокверковых зон, известных как проявления и пункты минерализации вольфрама, молибдена, меди, золота, урана, флюорита.

Трубообразное тело диаметром 170×200 м, прослежено скважинами на глубину до 300 м и располагается в основном среди верхнепалеозойских кварцевых монцонит-сиенитов. В кольцевой брекчированной зоне, примыкающей к "трубке», развито штокверковое оруденение, представленное сетью разноориентированных кварцево-гюбнерит-сульфидных прожилков и жил, а также даек основного и кислого составов.

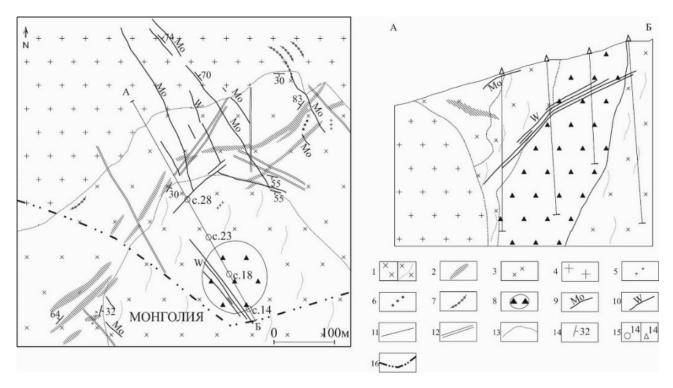
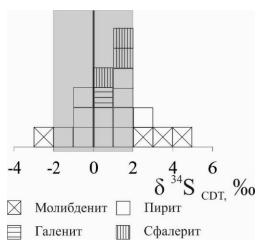



Рис. 1. Схема геологического строения Булуктайского комплексного молибден-вольфрамового месторождения по Г.И. Туговика (1974): а — план, б — разрез по разведочному профилю. 1 — верхнепалеозойские кварцевые монцонит-сиениты (а) и их брекчированные разности (б). 2−7 — дайки верхнего палеозоя: 2 — лампрофиры (спессартиты), 3 — диорит-порфириты, 4 — раннемезозойские аляскитовые граниты и их дайки, 5 — аплиты, 6 — гранит-порфиры, 7 — рудно-эксплозивные породы; 8 — полимиктовая брекчия эксплозивного сооружения. 9−11 — жилы: 9 — кварц-молибденитовые, 10 — кварц-гюбнеритовые, 11 — безрудные кварцевые; 12 — тектонические нарушения; 13 — геологические границы; 14 — элементы залегания; 15 — скважины на схеме (а), на разрезе (б); 16 — государственная граница.

На месторождении нами были проведены датировование Re-Os методом рудного этапа и изучение изотопных составов O, S, H, C различных стадий минералообразования. Используя данные термобарогеохимических исследований [4], был рассчитан изотопный состав кислорода во флюиде, равновесном с минералами из рудного и пострудного этапов.

Значение модельного возраста молибденита из прожилка рудного этапа составило — 145 ± 11 млн лет. Он резко отличается от предположения генетической связи оруденения с комплексов субщелочных гранитов с возрастом 298–292 млн лет [8] и приближен к значениям K-Ar и Rb-Sr возрастов лейкократовых и аляскитовых гранитов (до 172 млн лет) [6, 7].

Изотопный состав серы. Изотопные составы сульфидной серы определены в основном в пирите, меньше в молибдените и сфалерите. Один анализ проведен по галениту (рис. 2). Величины δ^{34} S изученных минералов, в основном, укладываются в поле метеоритного стандарта и указывает на мантийный источник серы этих минералов.

Изотопный состав кислорода. Составы кислорода в минералах начального этапа образования молибденовой минерализации и в воде, равновесной с ними ложиться в область их мантийного источника. Кислород в кварце вольфрамового этапа и флюида равновесного с ним дистанцирован от флюида молибденового этапа (табл. 1).

Рис. 2. Изотопные составы S (δ^{34} S_{CDT}, ‰).

 Таблица 1

 Изотопный состав кислорода, водорода и углерода в минералах месторождения Булуктай

Этап	Минерал	δ ¹⁸ O _{VSMOW} , ‰	δ ¹³ C _{PDB} , ‰	δD _{VSMOW} , ‰	δ ¹⁸ O _{fluid} , ‰	T
Молибденовый	мусковит	5,6			5,9	430
		5,9		-144,3	6,2	430
	берилл	6,7			7,1	340
	кварц	9,1			3,3	340
		7,2			1,4	340
		8,3			2,5	340
		9,3			3,5	340
Вольфрамовый	берилл	6,4			6,3	310
	кварц	8,9			2,2	310
		8,1			1,4	310
		7,9			1,2	310
	гюбнерит	-2,1			-0,2	310
		-3,72			-1,82	310
	шеелит	0,9			-1,8	200
	анкерит	7,54	-4,99			
Пострудный	хлорит	2,6		-	-1,4	150

Резкая обогащенность его легким изотопом указывает на участие в рудообразовании вод метеорного источника. Участие метеорной воды поддерживается деплетированностью дейтерием гидроксильной воды из мусковита. Изотопный состав кислорода в хлорите пострудного этапа также подтверждает участие метеорной воды в процессе его образования. Изотопный состав кислорода и углерода в анкерите попадает в квадрат РІС, что указывается на магматический источник углекислоты.

Исследования выполнены при финансовой поддержке РФФИ 17-05-00129 а.

Литература

- 1. Коржинский А. Ф., Францкая Е. В. О позднем выделении молибденита на Булуктаевском месторождении Юго-Западного Забайкалья // Известия СО АН СССР. Серия геология и геофизика. № 6. 1958. С. 46–53.
- 2. Вахромеев С. А., Иньшин Е. Д., Корытова Д. М. О геолого-структурных и генетических особенностях Булуктаевского молибден-вольфрамового месторождения. Зап. Вост. Сибир. отд. Всес. минер. о-ва. Вып. 3. 1962. С. 19–34.
- 3. Рипп Г. С. Новые данные о стадийности в формировании Булуктаевского молибден-вольфрамового месторождения // Материалы по геологии и полезным ископаемым Бурятской АССР. Улан-Удэ. Вып. 10. 1966. С. 155–168.
- 4. Kosals Ya. A., Dmitriyeva A. N. Sequences and temperatures in formation of the Buluktay molybdenum-tungsten deposit (Southwestern Transbaykal) // International Geology Review. V. 15. № 1. 1973. P. 25–30.
 - 5. Туговик Г. И. Эксплозии и рудный процесс. М.: Недра, 1974. 208 с.
- 6. Батурина Е. Е., Рипп Г. С. Молибденовые и вольфрамовые месторождения Западного Забайкалья. М.: Наука, 1984. 152 с.
- 7. Бузкова Н. Г. Новые данные о соотношении гранитоидного магматизма с эндогенным оруденением // ЛАН. Т. 338, № 6. С. 793–797
- 8. Джидинский рудный район: геологическое строение, структурно-металлогеническое районирование, генетические типы рудных месторождений, геодинамические условия их образования, прогнозы и перспективы освоения / И. В. Гордиенко [и др.] // ГРМ. Т. 60. № 1. 2018. С. 3–37.

Савченко Алена Алексеевна, аспирант Геологического института СО РАН, г. Улан-Удэ.